如果将课本上的Hanoi塔问题稍做修改:仍然是给定N只盘子,3根柱子,但是允许每次最多移动相邻的M只盘子(当然移动盘子的数目也可以小于M),最少需要多少次?
例如N=5,M=2时,可以分别将最小的2个盘子、中间的2个盘子以及最大的一个盘子分别看作一个整体,这样可以转变为N=3,M=1的情况,共需要移动7次。
x
Time Limit | $1$ 秒/Second(s) | Memory Limit | $512$ 兆字节/Megabyte(s) |
提交总数 | $639$ | 正确数量 | $468$ | "
裁判形式 | 标准裁判/Standard Judge | 我的状态 | 尚未尝试 |
难度 | 分类标签 | 数学 |
5 2
7