Problem H: 能量项链

"
Time Limit $1$ 秒/Second(s) Memory Limit $512$ 兆字节/Megabyte(s)
提交总数 $64$ 正确数量 $23$
裁判形式 标准裁判/Standard Judge 我的状态 尚未尝试
难度 分类标签

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有 N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标 记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗 能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m, 尾标记为n。
需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号◎表示两颗珠子的聚合操作,(j◎k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:
(4◎1)=10*2*3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为
((4◎1)◎2)◎3)=10*2*3+10*3*5+10*5*10=710。

第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行 是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i〈N时,第i颗珠子的尾标记应该等于第i+1颗 珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

只有一行,是一个正整数E(E≤2.1*10^9),为一个最优聚合顺序所释放的总能量

4
2  3  5  10
710