Problem 1351 --算法实现题 3-10 汽车加油行驶问题(习题 3-16)

1351: 算法实现题 3-10 汽车加油行驶问题(习题 3-16)

"
Time Limit $1$ 秒/Second(s) Memory Limit $512$ 兆字节/Megabyte(s)
提交总数 $0$ 正确数量 $0$
裁判形式 标准裁判/Standard Judge 我的状态 尚未尝试
难度 分类标签 动态规划
给定一个 N*N 的方形网格,设其左上角为起点,坐标为(1,1),X 轴向右为正,Y 轴向下为正,每个方格边长为 1。一辆汽车从起点出发驶向右下角终点,其坐标为(N,N)。在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在行驶过程中应遵守
如下规则:
(1)汽车只能沿网格边行驶,装满油后能行驶 K 条网格边。出发时汽车已装满油,在起点与终点处不设油库。
(2)当汽车行驶经过一条网格边时,若其 X 坐标或 Y 坐标减小,则应付费用 B,否则免付费用。
(3)汽车在行驶过程中遇油库则应加满油并付加油费用 A。
(4)在需要时可在网格点处增设油库,并付增设油库费用 C(不含加油费用 A)。
(5)(1)~(4)中的各数 N、K、A、B、C 均为正整数。

算法设计:

求汽车从起点出发到达终点的一条所付费用最少的行驶路线。

输入第一行是 N,K,A,B,C 的值,2 <= N <= 100,2 <= K <= 10。第二行起是一个 N*N 的 0-1 方阵,每行 N 个值,至 N+1 行结束。方阵的第 i行第 j 列处的值为 1 表示在网格交叉点(i,j)处设置了一个油库,为 0 时表示未设油库。各行相邻的 2 个数以空格分隔。

将找到的最优行驶路线所需的费用,即输出最小费用。文件的第 1行中的数是最小费用值。
7 5 4 5 100
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 1 1 0 0
17

推荐代码 查看1351 所有题解 上传题解视频得图灵币

本题记录 用 户(点击查看用户) 运行号(点击购买题解) 时 间
算法最快[$ $ms]
内存最少[$ $KB]
第一AC
第一挑战

赛题来源/所属竞赛 NA 算法导论(第三版)中文完整高清版

竞赛编号 竞赛名称 竞赛时间 访问比赛