Problem 1914 --Problem B: Discrete Logging

1914: Problem B: Discrete Logging

"
Time Limit $1$ 秒/Second(s) Memory Limit $512$ 兆字节/Megabyte(s)
提交总数 $4$ 正确数量 $2$
裁判形式 标准裁判/Standard Judge 我的状态 尚未尝试
难度 分类标签

Problem B: Discrete Logging

Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    BL == N (mod P)

Read several lines of input, each containing P,B,N separated by a space, and for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

   B(P-1) == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

   B(-m) == B(P-1-m) (mod P) .
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

推荐代码 查看1914 所有题解 上传题解视频得图灵币

本题记录 用 户(点击查看用户) 运行号(点击购买题解) 时 间
算法最快[$465 $ms] 淡意的温柔 589271 2020-05-31 14:49:41
内存最少[$3188 $KB] AOJ大管家 84429 2017-04-27 15:29:16
第一AC AOJ大管家 84429 2017-04-27 15:29:16
第一挑战 AOJ大管家 84429 2017-04-27 15:29:16

赛题来源/所属竞赛 NA N/A

竞赛编号 竞赛名称 竞赛时间 访问比赛