Problem 3393 --2015-3-求和

3393: 2015-3-求和

"
Time Limit $1$ 秒/Second(s) Memory Limit $512$ 兆字节/Megabyte(s)
提交总数 $0$ 正确数量 $0$
裁判形式 标准裁判/Standard Judge 我的状态 尚未尝试
难度 分类标签
一条狭长的纸带被均匀划分出了 n 个格子,格子编号从 1 到 n。每个格子上都染了一种颜色colori(用[1,m]当中的一个整数表示),并且写了一个数字colori
tle="" align="" />

定义一种特殊的三元组:(x, y, z),其中 x,y,z 都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:

  1. x, y, z都是整数, x < y < z, y − x = z − y
  2. colorx=colorz

满足上述条件的三元组的分数规定为(x+z)∗(numberx+numberz)。

整个纸带的分数规定为所有满足条件的三元组的分数的和。

这个分数可能会很大,你只要输出整个纸带的分数除以 10,007 所得的余数即可。


第一行是用一个空格隔开的两个正整数 n 和 m,n 代表纸带上格子的个数,m 代表纸带上 颜色的种类数。

第二行有 n 个用空格隔开的正整数,第 i 个数字numberi代表纸带上编号为 i 的格子上面写的数字。

第三行有 n 个用空格隔开的正整数,第 i 个数字colori代表纸带上编号为 i 的格子染的颜色。

共一行,一个整数,表示所求的纸带分数除以 10,007 所得的余数。
6 2
5 5 3 2 2 2
2 2 1 1 2 1
82
1≤n,m≤105
1≤numberi≤105
1≤colori≤m

推荐代码 查看3393 所有题解 上传题解视频得图灵币

本题记录 用 户(点击查看用户) 运行号(点击购买题解) 时 间
算法最快[$ $ms]
内存最少[$ $KB]
第一AC
第一挑战

赛题来源/所属竞赛 NOIP全国联赛普及组 N/A

竞赛编号 竞赛名称 竞赛时间 访问比赛