"想要传达的,仅仅只有一件是将瞬间保存下来的永远。"
小 A 曾经是绘画的天才,他可以奇迹般地将他所见的一切通过绘画记录下来。但如今的他因为事故失去了用惯用手作画的能力。不过,好在是小 A 还没有放弃绘画,他尝试用自己曾经锻炼出来的技巧以及他的毅力再一次向绘画挑战。
具体的,小 A 定义一副画的价值为 f(l, r) (l ≤ r , ),表示在集合 S = {l, l + 1, ..., r} 中选取一些数,满足选出的数字的乘积为完全平方数的方案数。小 A 画出一副价值为 f(l, r) 的画,意味着小 A 把绘画中的每个元素与数字中的 {l, l + 1, ..., r} 一一对应。对于一个选取方案 U = {x0, ..., xk} () 满足 为完全平方数,小 A 认为这对应了一种艺术审美视角,因此会使画的价值提升。注意:其中空集也算一种合法的选法。
曾经的小 A 可以控制参数 l, r ,但如今他失去了曾经的能力。不过好在他的身体替他记住了曾经的绘画技巧,于是他可以控制绘画的大体走向,但是小范围的细节仍然会有波动。也就是现在他所做出的画实际的价值为 f(l + x, r - y)。其中 x , y 是两个随机的参数。对于每一个正整数 i (1 ≤ i ≤ n),x = i 的概率为 pi,y = i 的概率为 qi。
设 l' = l + x, r' = r - y, d = r' - l', 小 A 想知道,对于所有的 d = r - l - 2n + 1, r - l - 2n + 2, ..., r - l - 1 ,其中画作的期望权值为多少。
答案对 998244353 取模后输出。
设答案的最简真分数形式可以表示成 ,输出 P × Q - 1 ± od {998244353} 的结果。数据保证 Q 不为 998244353 的倍数。