Problem F: 阶乘最右边的那个非0数
"
Time Limit |
1 秒/Second(s) |
Memory Limit |
512 兆字节/Megabyte(s) |
提交总数 |
2071 |
正确数量 |
1578 |
裁判形式 |
标准裁判/Standard Judge |
我的状态 |
尚未尝试 |
难度 |
|
分类标签 |
数论 |
当前分类(单击移除):
数论
单击选择分类:
一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积。阶乘的增长速度非常快,例如,13!就已经比较大了,已经无法存放在一个整型变量 中;而35!就更大了,它已经无法存放在一个浮点型变量中。因此,当n比较大时,去计算n!是非常困难的。幸运的是,在本题中,我们的任务不是去计算 n!,而是去计算n!最右边的那个非0的数字是多少。例如,5! = 1*2*3*4*5 = 120,因此5!最右边的那个非0的数字是2。再如:7! = 5040,因此7!最右边的那个非0的数字是4。请编写一个程序,输入一个整数n(n \le 100),然后输出n! 最右边的那个非0的数字是多少。
输入格式:输入只有一个整数n。
输出格式:输出只有一个整数,即n! 最右边的那个非0的数字。